Efficient Implementation of Multigrid Solvers on Message-
Passing Parallel Systems

(For presentation at SHPC(C94)

Presenting author: John Lou
Notification to: John L.ou

Address:

John 1.0u

Mail Stop: 169-31S

Jet Propulsion Laboratory
4800 oak Grove Drive
Pasadena, CA 91109

lou@acadia.jpl.nasa.gov
Tel: (818) 34-4870
Fax:(818) 393-4802

Efficient Implementation of Mull igrid Solvers on Message-
Passing Parallel Systems

Extended Abstract

We discuss our implementation strategies for finite difference multigrid partial differential
equation (PDE) solvers cm message-passing systems. Our target parallel architecture is Intel par-
al lel computers: the Delt aand Paragon syst em. It is shown that natural grid decomposit ions for
21> and 3D problems mapped onto ring, 213 and 3D logical meshes of physical processors can
achicve scalable performances for multi grid V-cycle and full V-cycle, al gorithms. It is also shown
how grid partitions, local data structures, logical processor networks for fine and coarse grids and
code modules are chosen to maximize the efficiency and robustness of the code. Performances of
our code (writ ten in C) on Delta and Paragon machines are (will be) presented and anal yzed.

1. Multigrid Algorithm and Its Parallel Implementation

Muligrid solvers are efficient iterative solvers for many PDI problems due to itsability to
reduce numericalerrors of al frequencies effect ively by performing relaxat ionson an hierarch 'y
of fine to coarse grids. A typical coarse-grid-correction scheme. consists of three major compo-
nents: relaxation cm a given grid, restriction of residuals to a coarser grid and interpolation of
errors back to a finer grid. Ina geometrical (as opposcd to algebraic) multigrid scheme, interpola-
tion and restriction operators can be defined ina simple and intuitive way and therefore writing a
sequential code for aclassical multigrid (e.g. V-cycle) scheme isrelatively ssimple. ' J here have
been some the.orc.tical analysis and implementations of paralel multigrid schemes|1][2]. One
difficulty that arises in the parallel implementation of a complete V-cycle. scheme is the idle pro-
cessor issue. Not only may the idle processors degrade the efficiency of processor usage, but on a
di stributed-memory system, message-passing structure. may aso need to change for processing on
a coarse grid. When the number of fine grid points contained in cach processor is not too small
compared to the dimension of the processor network used, the efficiency of processor usage
should be reasonabl y good. In our implement at ion of V-cycle t ype schemes, the origina (fine)
grid is partitioned and distributed to an initial processor network. 1.ocal coarse. subgrids ina pro-
cessor arc derived from local finer subgrids recursively. Processing on a coarse grid when idle
processors appear is done by using a corresponding coarse, processor network,

Multigrid solver is often used as a component in some numerical schemes like multilevel
or adaptive mesh algorithms. It is there.fore important to develop amultigrid solver that is highly
modularized, robustand extensible so that either it canbe easily incorporated into some applica-
tion code or it can be extended into an application code without much difficulty. These are the
principles we followed in our code development. AS aresult, the code we developed can be easily
adaptedto solving linear, nonlinear andtime-dependent PDIs.

2. Our Implement ation Straf egy

A) Computatiron] GridPartitions and Logical Processor Networks

| ‘ora 21 problem, a 111 or 2D grid partition canbeused. 1 N all) strip partitionof a
M x N computational grid to /> processors, we configure the processors into aring and let each
processor contain M /P consccutive rows of grid points if M is divisible by ; otherwise first M

mod () processors get one more row. This grid part it ion and processor network are illustrated in
figure 1. Yor a3 problem, 21D or 3D grid pariton can be used. Figure 2 shows a partition of a
3D grid mapped to a2 logical processor network, 1 igure 3 shows a partition of 313 grid assigned
to a3 logical processor network.

30 - o

a:,
EE Pii

Figure 3: 3D grid partition mapped to a 3D torus mesh processor network;
only two wrap-around connections are shown in the network.

‘The wrap-around logical connections in 1, 2 and 31> processor networks arc useful in
constructing coarse processor networks for coarse. grid processing; but they are not used in multi-
griditerations. For a d-dimensional computational gridand P processors, a natural processor net-
work to use seems to be ad-dimensional mesh. nut as the computational grid gets coarser and
coarser, the number of grid pointscontainedineach processor may cic.crease to a point that mes-
sage-i)assing COst dominates the local computation] cost. Using a (d-1)-dimensional processor
mesh for ad-dimensional computational grid, the minimum number of computational grid points
cach processor can have is larger because some processors wiil become idle earlier inthe V-cycle
itcrations than using a d-dimensional processor mesh. Another practical issue is the number of
message-passing and buffer-copying operations required to exchange grid partition boundary data
using a(d-1)-dimensional grid partition issmaller, 1 lowever, the processor utilization at later

stages of a V-cycle scheme is larger for the d-dimensional grid parition. Therefore it seems not
obvious which partition strategy would give a better performance. (d-1)-dimensional grid parti-
tion can also be advantageous when line relaxation isused in one dimension for some asymmetric
PDY because the data locality in one dimension makes the line relaxation alocal operation.

B) 1 .0cal Data Structurcs

1 ‘ach processor maintains a structure to hold alist of fine to coarse grids. An array of
pointers 1o a data type “ndim_grid” is declared to hold solutions defined on different local grids,
where ndim= 1, 2 or 3. The same data structure. is used to store right-hand side vectors on differ-
ent grids. Figure 4 shows this type of data structure which allows efficient access to grid values on
different grids. 1 nteger arrays are used to store indices in each dimension for each local subgrid.
These indices are needed for multigrid processing and for message-passing to get partition bound-
ary information. Information related to grids is collected in a single structure Grid. Other infor-
mation needed at various stages (e.g. neighbor processor 11Ds, processor status etc.) is collected
into another data structure. Misc. Pointers to these stroctures are passed, when needed, to various
functions so that interfaces between functions are very simple and the number of global variables
iIsminimized.

'To enhance code robustness and efficiency of memory usage, only pointers are defined in
data structures for grid vectors anti indices. Storages required for different gridsare calculated and
allocated at run-time in a preprocessing module.

Y

Figure 4: Datastructure for solution and right-hand side vectors on different
grids. Shaded bounding areas arc uscd o store partition boundary values, and
interior arcas store local grid values.

C) Interprocessor Communications

in doing message-passing, cach processor only communicates with its nearest ncighbors.
To implement complete V-cycle/ full V-cycle. iterations on one. of the processor nctworks dis-
cussed above, onc needs to deal with coarse grid processing in which some processors may
beecome idle at certain stage. This implies as gridcoat sening reaches a certain stage, the original
processor network can not be used anymore. since for active processors at this stage, their nearest
neighbors may have changed. We chose to construct an hicrarchy of coarse logical processor net-
wor Ks to be used cm coarse grids when idle processors appear. All logical processor networks arc
constructedin a preprocessing module and this processing module is called only once. Since V-
cycle or full V-cycle iterationroutines arcusually called many times, especiallyin solving a time-
dependent PDE, the cost of executing the preprocessing module should be relatively 10W. Mes-
sage-passing for exchanging partition boundary values is necded for three operations ina multi-
grid cycle: relaxation, residual calculation for restriction and interpolation for correction. Ior
relaxation, message-passing with a nearest interior neighbor processor is symmetric; but for
restriction and correction, the needed message-Jxtssing is generally not symmetric.,

1)) Code Modules

Our multigrid code consists of two main modules: a pre.processing or set-up module and a
multigrid cycle module. The preprocessing module takes care of user input, program initializa-
tion, construction of logical processor nctworks, local memory allocations andassignment of
boundary conditions. The multigrid cycle module performs V-cycle or full V-cycle iterat ions
through recursive function calls. An array of local flags indicates whether a processor is active or
idle at each stage of processing, that is used by both set-up andmultigrid cycle modules to control
the processor’s participation in various operations.

3. Performances

The performances of our code on Delta machine (performances on Paragon will be
reported later) for 3D grids using two grid partitions for solving Poi sson equation with 1)irichlet
boundary condition arc displayed intable 1 and 2. Execution time shown isfor 1 V-cycle (MV) or
1full V-cycle (*MV) where red-black Gauss-Scidel scheme isused for smoothing. It is seen that
in both cases the performance scales reasonably well. The set-up time is for running the prepro-
cessing module whose cost is more related to the Jocal grid dinyensions and structure in each pro-
cessor than to the size of the global processor net wor k.

Table 1. 3D Grid on 3D l.ogical Mesh Processor Networks

Grid size | 64° grid on 1583%': ; " 2‘16; %":.;IZH SJéZiggii gn
and network | 1 processor network net work net work
set-llp 1.8 sec 37.6 sec 38.2 sec 40.0 scc

—_]t MV 9.1 sec B 17_\;() 12.5 sec 133 SC(—
1MV 11.8 sec 15.9 sec 16.7 sec 17,6 scc
Table 2 31) Gridon 2 1) Logical Mesh Processor Networks

Grid size | 64 grid on 128239)251 on 25(’;%:‘2 cm 51%?;’20”
and network |1 processor network net work net work
set-up 1.8 sec 9.5scc 11.9 sec 6.8 sce

“]w.gl\/l_\/ - 9.1 sce 10.9 sce 11.7 §CC - 1'3.() sec .
W]WFMV_M 11.8 Scc 16.é Q(‘(17.2sec

15.3 see

[1] Chan,E C.and Tuminaro, R. S., “A Survey of Parallel Multigrid Algorithms’, in Paralel
Computations and Their Impact cm Mechanics, A. K. Noor ¢d., Vol: AM 15 86,1986

[2] McCormick, S. 1<, “Multilevel Adaptive Methods for Partial Differential Equations”, SIAM
Frontiersin Applied Mathematics, Vol. 6, Philadclphia, 1989

